\(\int \frac {\tan ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\) [340]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 530 \[ \int \frac {\tan ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=-\frac {2 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a^2 d}+\frac {2 \left (8 a^4-11 a^2 b^2+3 b^4\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {-\frac {b (-1+\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 a b^4 \sqrt {a+b} d}+\frac {2 (2 a+b) \left (4 a^2+a b-3 b^2\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {-\frac {b (-1+\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 a b^3 \sqrt {a+b} d}-\frac {4 a \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {2 a^2 \sec (c+d x) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (4 a^2-b^2\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 b^2 \left (a^2-b^2\right ) d} \]

[Out]

-2*cot(d*x+c)*EllipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec
(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d+2/3*(8*a^4-11*a^2*b^2+3*b^4)*cot(d*x+c)*EllipticE(
(a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(-b*(-1+sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a
-b))^(1/2)/a/b^4/d/(a+b)^(1/2)+2/3*(2*a+b)*(4*a^2+a*b-3*b^2)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)
^(1/2),((a+b)/(a-b))^(1/2))*(-b*(-1+sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/b^3/d/(a+b)^(1/
2)-4*a*tan(d*x+c)/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)+2*b^2*tan(d*x+c)/a/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)-2*a
^2*sec(d*x+c)*tan(d*x+c)/b/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)+2/3*(4*a^2-b^2)*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c
)/b^2/(a^2-b^2)/d

Rubi [A] (verified)

Time = 2.05 (sec) , antiderivative size = 907, normalized size of antiderivative = 1.71, number of steps used = 17, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {3980, 3870, 4143, 4006, 3869, 3917, 4089, 3921, 4090, 3930, 4167} \[ \int \frac {\tan ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=-\frac {2 \sec (c+d x) \tan (c+d x) a^2}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {4 \tan (c+d x) a}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (8 a^2-5 b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} a}{3 b^4 \sqrt {a+b} d}-\frac {4 \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} a}{b^2 \sqrt {a+b} d}+\frac {2 \left (4 a^2-b^2\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 b^2 \left (a^2-b^2\right ) d}+\frac {2 (2 a+b) (4 a+b) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}}}{3 b^3 \sqrt {a+b} d}-\frac {4 \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}}}{b \sqrt {a+b} d}+\frac {2 b^2 \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)} a}+\frac {2 \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}}}{\sqrt {a+b} d a}-\frac {2 \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}}}{\sqrt {a+b} d a}-\frac {2 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}}}{d a^2} \]

[In]

Int[Tan[c + d*x]^4/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(2*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c +
d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a*Sqrt[a + b]*d) - (4*a*Cot[c + d*x]*EllipticE[ArcSi
n[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 +
Sec[c + d*x]))/(a - b))])/(b^2*Sqrt[a + b]*d) + (2*a*(8*a^2 - 5*b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*
Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x])
)/(a - b))])/(3*b^4*Sqrt[a + b]*d) - (2*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (
a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a*Sqrt[a + b]*d
) - (4*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[
c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*Sqrt[a + b]*d) + (2*(2*a + b)*(4*a + b)*Cot[c
+ d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a
 + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*b^3*Sqrt[a + b]*d) - (2*Sqrt[a + b]*Cot[c + d*x]*EllipticPi
[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)
]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a^2*d) - (4*a*Tan[c + d*x])/((a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]
]) + (2*b^2*Tan[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]]) - (2*a^2*Sec[c + d*x]*Tan[c + d*x])/(b*(a
^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]]) + (2*(4*a^2 - b^2)*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(3*b^2*(a^2 -
b^2)*d)

Rule 3869

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b
*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b)*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b
*Csc[c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3870

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[b^2*Cot[c + d*x]*((a + b*Csc[c + d*x])^(n +
 1)/(a*d*(n + 1)*(a^2 - b^2))), x] + Dist[1/(a*(n + 1)*(a^2 - b^2)), Int[(a + b*Csc[c + d*x])^(n + 1)*Simp[(a^
2 - b^2)*(n + 1) - a*b*(n + 1)*Csc[c + d*x] + b^2*(n + 2)*Csc[c + d*x]^2, x], x], x] /; FreeQ[{a, b, c, d}, x]
 && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3921

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[a*Cot[e + f*x]*((
a + b*Csc[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] - Dist[1/((m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a +
 b*Csc[e + f*x])^(m + 1)*(b*(m + 1) - a*(m + 2)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b
^2, 0] && LtQ[m, -1]

Rule 3930

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-a^2)
*d^3*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 3)/(b*f*(m + 1)*(a^2 - b^2))), x] + Dist
[d^3/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 3)*Simp[a^2*(n - 3) + a*b
*(m + 1)*Csc[e + f*x] - (a^2*(n - 2) + b^2*(m + 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] &&
 NeQ[a^2 - b^2, 0] && LtQ[m, -1] && (IGtQ[n, 3] || (IntegersQ[n + 1/2, 2*m] && GtQ[n, 2]))

Rule 3980

Int[cot[(c_.) + (d_.)*(x_)]^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[ExpandIntegrand
[(a + b*Csc[c + d*x])^n, (-1 + Csc[c + d*x]^2)^(m/2), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0]
 && IGtQ[m/2, 0] && IntegerQ[n - 1/2]

Rule 4006

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4143

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[Csc[e + f*x
]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rule 4167

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m
 + 2))), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) + (b*
B*(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {1}{(a+b \sec (c+d x))^{3/2}}-\frac {2 \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}}+\frac {\sec ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}}\right ) \, dx \\ & = -\left (2 \int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\right )+\int \frac {1}{(a+b \sec (c+d x))^{3/2}} \, dx+\int \frac {\sec ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx \\ & = -\frac {4 a \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {2 a^2 \sec (c+d x) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {4 \int \frac {\sec (c+d x) \left (-\frac {b}{2}-\frac {1}{2} a \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{a^2-b^2}-\frac {2 \int \frac {\frac {1}{2} \left (-a^2+b^2\right )+\frac {1}{2} a b \sec (c+d x)+\frac {1}{2} b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )}-\frac {2 \int \frac {\sec (c+d x) \left (a^2-\frac {1}{2} a b \sec (c+d x)-\frac {1}{2} \left (4 a^2-b^2\right ) \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{b \left (a^2-b^2\right )} \\ & = -\frac {4 a \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {2 a^2 \sec (c+d x) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (4 a^2-b^2\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 b^2 \left (a^2-b^2\right ) d}-\frac {2 \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{a+b}-\frac {2 \int \frac {\frac {1}{2} \left (-a^2+b^2\right )+\left (\frac {a b}{2}-\frac {b^2}{2}\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )}+\frac {(2 a) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{a^2-b^2}-\frac {4 \int \frac {\sec (c+d x) \left (\frac {1}{4} b \left (2 a^2+b^2\right )+\frac {1}{4} a \left (8 a^2-5 b^2\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 b^2 \left (a^2-b^2\right )}-\frac {b^2 \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )} \\ & = \frac {2 \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a \sqrt {a+b} d}-\frac {4 a \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^2 \sqrt {a+b} d}-\frac {4 \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b \sqrt {a+b} d}-\frac {4 a \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {2 a^2 \sec (c+d x) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (4 a^2-b^2\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 b^2 \left (a^2-b^2\right ) d}+\frac {\int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx}{a}-\frac {b \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{a (a+b)}+\frac {((2 a+b) (4 a+b)) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 b^2 (a+b)}-\frac {\left (a \left (8 a^2-5 b^2\right )\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 b^2 \left (a^2-b^2\right )} \\ & = \frac {2 \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a \sqrt {a+b} d}-\frac {4 a \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^2 \sqrt {a+b} d}+\frac {2 a \left (8 a^2-5 b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^4 \sqrt {a+b} d}-\frac {2 \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a \sqrt {a+b} d}-\frac {4 \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b \sqrt {a+b} d}+\frac {2 (2 a+b) (4 a+b) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^3 \sqrt {a+b} d}-\frac {2 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a^2 d}-\frac {4 a \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {2 a^2 \sec (c+d x) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (4 a^2-b^2\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 b^2 \left (a^2-b^2\right ) d} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 17.41 (sec) , antiderivative size = 531, normalized size of antiderivative = 1.00 \[ \int \frac {\tan ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 (b+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (2 \left (8 a^3+8 a^2 b-3 a b^2-3 b^3\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )-4 a b (4 a+b) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+12 b^3 \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+\frac {1}{2} \left (8 a^2-3 b^2\right ) (b+a \cos (c+d x)) \sec ^3\left (\frac {1}{2} (c+d x)\right ) \left (-\sin \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {3}{2} (c+d x)\right )\right )\right )}{3 a b^3 d \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} (a+b \sec (c+d x))^{3/2}}+\frac {(b+a \cos (c+d x))^2 \sec ^2(c+d x) \left (\frac {2 \left (-8 a^2+3 b^2\right ) \sin (c+d x)}{3 a b^3}-\frac {2 \left (-a^2 \sin (c+d x)+b^2 \sin (c+d x)\right )}{a b^2 (b+a \cos (c+d x))}+\frac {2 \tan (c+d x)}{3 b^2}\right )}{d (a+b \sec (c+d x))^{3/2}} \]

[In]

Integrate[Tan[c + d*x]^4/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(2*(b + a*Cos[c + d*x])*Sec[c + d*x]^(3/2)*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(2*(8*a^3 + 8*a^2*b - 3*a*b^2
 - 3*b^3)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Ellipt
icE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 4*a*b*(4*a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b
 + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 12*b^3
*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticPi[-1,
ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + ((8*a^2 - 3*b^2)*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^3*(-Sin[(c
 + d*x)/2] + Sin[(3*(c + d*x))/2]))/2))/(3*a*b^3*d*Sqrt[Sec[(c + d*x)/2]^2]*(a + b*Sec[c + d*x])^(3/2)) + ((b
+ a*Cos[c + d*x])^2*Sec[c + d*x]^2*((2*(-8*a^2 + 3*b^2)*Sin[c + d*x])/(3*a*b^3) - (2*(-(a^2*Sin[c + d*x]) + b^
2*Sin[c + d*x]))/(a*b^2*(b + a*Cos[c + d*x])) + (2*Tan[c + d*x])/(3*b^2)))/(d*(a + b*Sec[c + d*x])^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1964\) vs. \(2(489)=978\).

Time = 14.84 (sec) , antiderivative size = 1965, normalized size of antiderivative = 3.71

method result size
default \(\text {Expression too large to display}\) \(1965\)

[In]

int(tan(d*x+c)^4/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/3/d/a/b^3*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)*(a*b^2*sin(d*x+c)-4*a^2*b*sin(d*x+c)-3*b^3*
cos(d*x+c)*sin(d*x+c)-8*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*
x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b+3*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*
(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2-8*(1/(a+b)*(b+a*cos(d*
x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1
/2))*a^3*cos(d*x+c)^2+3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*Elli
pticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3*cos(d*x+c)^2+8*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+
b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b+2*EllipticF
(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)*a*b^2-16*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*Ell
ipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)+6*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(
1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3*cos(d*x+c)-6*(
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x
+c),-1,((a-b)/(a+b))^(1/2))*b^3*cos(d*x+c)^2-12*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(c
os(d*x+c)+1))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*b^3*cos(d*x+c)+a*b^2*tan(d*x+c)-8
*a^3*cos(d*x+c)*sin(d*x+c)+16*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(
cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)+4*EllipticF(cot(d*x+c)-csc(d*x+c),((a-
b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d
*x+c)+8*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2+2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)^2-8*(1/(a+b)*(
b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)
/(a+b))^(1/2))*a^2*b*cos(d*x+c)^2+3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1)
)^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)^2-16*(1/(a+b)*(b+a*cos(d*x+c))/(
cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^
2*b*cos(d*x+c)+6*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(c
ot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)-6*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*c
os(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*b^3+3*a*b^2*cos(d*x+
c)*sin(d*x+c)-8*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))
^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^3+3*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(
b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3+4*a^2*b*cos(d*x+c)*sin(d*x+c))

Fricas [F]

\[ \int \frac {\tan ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {\tan \left (d x + c\right )^{4}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(tan(d*x+c)^4/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c) + a)*tan(d*x + c)^4/(b^2*sec(d*x + c)^2 + 2*a*b*sec(d*x + c) + a^2), x)

Sympy [F]

\[ \int \frac {\tan ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\tan ^{4}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(tan(d*x+c)**4/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Integral(tan(c + d*x)**4/(a + b*sec(c + d*x))**(3/2), x)

Maxima [F(-1)]

Timed out. \[ \int \frac {\tan ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(tan(d*x+c)^4/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {\tan ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {\tan \left (d x + c\right )^{4}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(tan(d*x+c)^4/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(tan(d*x + c)^4/(b*sec(d*x + c) + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {{\mathrm {tan}\left (c+d\,x\right )}^4}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int(tan(c + d*x)^4/(a + b/cos(c + d*x))^(3/2),x)

[Out]

int(tan(c + d*x)^4/(a + b/cos(c + d*x))^(3/2), x)